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ABSTRACT

We derive a new formalism for convective motions involving two radial flows. This
formalism provides a framework for convective models that guarantees consistency
for the chemistry and the energy budget in the flows, allows time-dependence and
accounts for the interaction of the convective motions with the global contraction or
expansion of the star. In the one-stream limit the formalism reproduces several existing
convective models and allows them to treat the chemistry in the flows. We suggest a
version of the formalism that can be implemented easily in a stellar evolution code.

We then apply the formalism to convective Urca cores in Chandrasekhar mass
white dwarfs and compare it to previous studies. We demonstrate that, in degenerate
matter, nuclear reactions that change the number of electrons strongly influence the
convective velocities and we show that the net energy budget is sensitive to the mixing.
We illustrate our model by computing stationary convective cores with Urca nuclei.
Even a very small mass fraction of Urca nuclei (as little as 10−8) strongly influences
the convective velocities. We conclude that the proper modelling of the Urca process
is essential for determining the ignition conditions for the thermonuclear runaway in
Chandrasekhar-mass white dwarfs.

Key words: convection – neutrinos – nuclear reactions – supernovae: Type Ia – white
dwarfs

1 INTRODUCTION

Gamow & Schönberg (1941) were the first to recognise the
Urca process (electron captures and emissions on pairs of
nuclei that can be converted into each other by electron
captures/beta decays) as a potentially strong source of neu-
trino cooling in degenerate stars. This process is already
responsible for significant cooling during the late radiative
phase of accreting C/O white dwarfs. For each Urca pair,
the cooling occurs at a mass shell, a so-called Urca shell, de-
termined by the characteristic density for the pair at which
the electron captures/beta decays take place. When carbon
burning starts, a convective core grows and soon engulfs the
Urca shells. The convective motions across the Urca shells
back and forth directly affect the net energy release as well
as the net amount of electrons captured. The resulting phe-
nomenon is called the convective Urca process and is a key
ingredient in linking the late evolution of the progenitor of
a Type Ia supernova (SN Ia) with the subsequent explosion
(Paczyński 1972).

Over the last 30 years there have been numerous studies
of the convective Urca process with often mutually exclusive
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conclusions. Bruenn (1973) realised that nuclear heating in
Urca matter outside chemical equilibrium dominates over
the neutrino losses. On the other hand, Couch & Arnett
(1975) stressed the cooling effect of the work done by con-
vection. In the most detailed work to date, Iben (1978a,b,
1982) computed the evolution of an accreting white dwarf
including the detailed chemistry of many Urca pairs. He re-
alised that the turn-over time scales would be of the same
order as the chemical time scales for the Urca reactions.
This, he concluded, implied that the mixing processes caused
by the growth of the convective core would affect the heat-
ing/cooling by the Urca process. However numerical prob-
lems caused by his treatment of the mixing prevented him
from following the computations up to the thermal runaway.

Barkat & Wheeler (1990) revisited the problem of the
convective Urca process and provided a clear summary of
the convective Urca mechanism though later Mochkovitch
(1996) and Stein, Barkat & Wheeler (1999) pointed out
a mistake in their treatment and argued that more atten-
tion needs to be paid to the kinetic energy of convection.
Bisnovatyi-Kogan (2001) showed that the feedback of the
Urca process on convection itself should be taken into ac-
count. As this summary shows, a consistent picture of con-
vection that properly treats the chemistry is still missing
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and is badly needed in order to address the problem of the
convective Urca process.

Such a theory for chemistry coupled with convection
was attempted by Eggleton (1983) with the help of a “sim-
ple rule-of-thumb procedure”. Later, Grossman et al. (1993)
produced a physically consistent model of convection which
includes chemistry based on a statistical approach for the
convective blobs. However, their model did not necessarily
conserve energy and has only been checked without chem-
istry.

Here we devise a model for convection that ensures
energy conservation. We start with the conservation equa-
tions of radiation hydrodynamics in a spherical configu-
ration. Using a simple geometry, which mimics convective
rising plumes, we derive a physically self-consistent model
of convection which includes time-dependent chemistry. We
then compare this formalism to previously derived models of
convection. In the process we obtain a model for the convec-
tive Urca process that addresses all the problems mentioned
above, nuclear heating, mixing, convective work, kinetic en-
ergy and the feedback of the Urca process on convection. To
illustrate the formalism, we apply it to stationary convective
Urca regions and show how it affects the energy budget, the
convective properties and the chemical stratification. In a
follow-up paper, we plan to apply the formalism in a realis-
tic, time-dependent stellar model, coupled with a complete
nuclear reaction network, to determine the ignition condi-
tions for the thermonuclear runaway in a SN Ia.

In section 2 we derive the basic equations for the two-
stream formalism and suggest a simple model for the ex-
change of matter, momentum and energy between rising
and descending flows. In section 3 we compare our model
to existing models of convection. In section 4 we describe
the convective Urca process in view of our model. In section
5 we compute stationary Urca convective cores. We discuss
and summarise our results in sections 6 and 7.

2 A TWO-STREAM FORMALISM FOR
CONVECTION

Cannon (1993) designed a two-stream algorithm to post-
process the evolution of chemical species in convective re-
gions. This model was well suited to the study of convec-
tive regions in which the chemical time scales were shorter
than the convective turn-over time scales. But, as a post-
processing algorithm, it did not tackle the feedback effects
the chemistry could have on the convection. Here we ex-
tend his ideas to all state variables in the two streams and
explore the interactions between mass, energy, momentum
and chemical transfers between the streams.

Let us consider a sphere of gas with purely radial ve-
locities and stratified properties. We assume that, on a shell
of radius r, there are two different velocities associated with
the two streams. We further assume that, on this shell, all
gas parcels moving with a given velocity have the same state,
they have homogeneous temperature, pressure and chemical
composition. Figure (1) schematically shows the geometrical
configuration we have in mind.

One of the two velocities has to be greater than the
other, and we refer to the gas moving with this velocity as
the upward moving gas, even though both velocities could
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Figure 1. Geometrical configuration of the two streams.

be negative in principle. We write the two velocities as v +
vu and v − vd, where vu and vd are both positive and are
associated with the upward and the downward moving fluid,
respectively. The ambient velocity v will be defined further
below.

We now affix suffixes ‘u’ to upward moving fluid proper-
ties and ‘d’ to downward moving fluid properties. We assume
that the sound-crossing time of a horizontal section of one
stream is short compared to any other time scale and hence
make the approximation that the pressure p = pu = pd is
the same in the upward and downward moving fluids. The
state of the gas in both fluids is now completely determined
by the temperatures Tu and Td and abundance vectors Nu

and Nd (number of particles per unit mass), provided we
know the equation of state of the gas. The latter equation
provides the mass densities ρu(p, Tu,Nu) and ρd(p, Td,Nd),
and the specific energies eu and ed, along with the radiative
volumic energies Eu and Ed.

We define Su and Sd as the areas of the surfaces occu-
pied by the two fluids at the shell of radius r. Therefore

S = Su + Sd = 4πr2 (1)

and we define the velocity v by setting the mass flow

ṁ = Suvuρu = Sdvdρd. (2)

This defines v as the radial velocity of the centre of a mass
shell. The net mass flow through the shell moving at velocity
v is zero.

We now write the equations for the variation of mass,
momentum and energy for each of the two fluids and define
the exchange terms. We then compute the equations for the
average fluid and the specific equations of evolution for both
fluids, before computing the differential evolution between
the two fluids. Finally, we propose a very simple model for
the exchange terms between the streams.

2.1 Conservation equations

We consider the mass, momentum and energy on a shell at
radius r for each of the two fluids. This allows us to define
the exchange terms in a conservative way and makes it easier
to derive the mean equations. Moreover, with this approach
the specific exchange terms can be defined more rigorously.

The viscosity of the fluid is neglected as well as the



Formalism for the convective Urca process 3

molecular diffusion. All horizontal effects are implicitly in-
cluded in the exchange terms.

2.1.1 Mass

To simplify the derivation, we neglect the mass changes due
to the nuclear transformations and assume that mass is per-
fectly conserved. We treat the corresponding nuclear energy
production only in the energy equation. The rate of change
of mass is hence equal to the sum of the mass flux in the
radial direction and sideways,

∂

∂t
(Suρu) = − ∂

∂r
[Suρu(v + vu)] + Ṁ , (3)

and

∂

∂t
(Sdρd) = − ∂

∂r
[Sdρd(v − vd)] − Ṁ , (4)

where Ṁ represents the mass per unit radius and unit time
exchanged in the shell from the downward to the upward
moving fluid.

2.1.2 Momentum

The rate of change of momentum is the sum of the momen-
tum flux (ram and thermal pressure) in the radial direction
and sideways, added to the gravitational forces where the
gravitational potential is assumed to be spherical,

∂

∂t
[Suρu(v+vu)] = −Su

∂

∂r
[ρu(v+vu)2+p]−Suρu

Gm

r2
+Q̇,(5)

and

∂

∂t
[Sdρd(v−vd)] = −Sd

∂

∂r
[ρd(v−vd)2+p]−Sdρd

Gm

r2
−Q̇.(6)

Here G is Newton’s constant of gravitation, m is the total
mass contained inside the sphere of radius r,

m =

∫ r

0

(Suρu + Sdρd) dr′ (7)

and Q̇ is the momentum per unit mass and unit time ex-
changed in this shell from the upward to the downward mov-
ing fluid.

2.1.3 Energy

The rate of change of energy is the advective plus diffusive
energy flux, in the radial direction and sideways, added to
the work of pressure forces and heat generation,

∂

∂t
(Suρueu) = − ∂

∂r
[Suρueu(v + vu)] − p

∂

∂r
[Su(v + vu)]

−p
∂

∂t
(Su) + Suρu

(

ǫu − ∂Lu

Suρu∂r

)

+ Ė (8)

and

∂

∂t
(Sdρded) = − ∂

∂r
[Sdρded(v − vd)] − p

∂

∂r
[Sd(v − vd)]

−p
∂

∂t
(Sd) + Sdρd

(

ǫd − ∂Ld

Sdρd∂r

)

− Ė. (9)

Here, L is the luminosity carried by the conductive and ra-
diative processes (in the radial direction),

Lu = −Suc

3κu

∂Eu

∂r
(10)

= ρucPuχu

∂Tu

∂r
Su, (11)

and

Ld = −Sdc

3κd

∂Ed

∂r
(12)

= ρdcPdχd

∂Td

∂r
Sd, (13)

where E is the radiative energy per unit of volume given
by the equations of state, c is the speed of light, κ is the
flux weighted total opacity for the conductive and radiative
processes (in the diffusion approximation), χ is the thermal
diffusion coefficient and cP is the heat capacity at constant
pressure.
The net energy production per unit time and per unit mass
is ǫ. This can include the nuclear energy production if the
rest mass energy is not yet included in the specific energy,
and it includes the neutrino losses. The energy per unit time
and per unit radius exchanged in the shell from the upward
to the downward moving fluid is Ė.

2.1.4 Chemistry

The rate of change of a species is its flux in the radial direc-
tion and sideways added to its chemical rate of change,

∂

∂t
(SuρuNu) = − ∂

∂r
[SuρuNu(v + vu)] + SuρuRu + Ṅ (14)

and

∂

∂t
(SdρdNd) = − ∂

∂r
[SdρdNd(v − vd)] + SdρdRd − Ṅ, (15)

where Ṅj represents the mass of species j per unit radius
and per unit time exchanged in the shell from the downward
moving fluid to the upward moving fluid, and Rj is the rate
of change of species j per unit time and unit mass due to
nuclear reactions.

2.2 Equations for the mean fluid

When we sum up each pair of the above equations we obtain
the equations for the variation of the mean mass, energy and
momentum. We first derive these equations in their volumic
form and then gather them all in a more familiar specific
form.

2.2.1 Mass

The mean density ρ is defined by

ρS = ρuSu + ρdSd. (16)

The equation for mass conservation then reads

∂

∂t
(Sρ) = − ∂

∂r
(Sρv), (17)

which is the unchanged continuity equation for the mean
fluid.
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2.2.2 Momentum

The mean equation for momentum is more complex and
involves several additional terms,

∂

∂t
(Sρv) = −S

∂

∂r
(ρv2 + p) − Sρ

Gm

r2
+ SρXconv, (18)

where

SρXconv = X1 + X2 + X3, (19)

X1 = −Su

∂

∂r
(ρuv2

u) − Sd

∂

∂r
(ρdv2

d), (20)

X2 = −2v[Su

∂

∂r
(ρuvu) − Sd

∂

∂r
(ρdvd)] and (21)

X3 = (ρd − ρu)v2

[

Su

S

∂Sd

∂r
− Sd

S

∂Su

∂r

]

, (22)

where we have used equation (1). Usually, the evolution of
the star is quasi-static, which means that v is negligible.
Then only X1 should be retained because X2 and X3 are of
order 1 and 2 in v.

X1 accounts for a convective pressure support in the
flow. It slightly changes the hydrostatic equilibrium but is
usually negligible in the subsonic regime.

2.2.3 Energy

We define the mean specific energy as

Sρe = ρuSueu + ρdSded (23)

and the mean energy generation per unit mass ǫ in the same
way as

ρǫ = ρuSuǫu + ρdSdǫd. (24)

The radiative and conductive luminosity is given by

L = Lu + Ld. (25)

Then the equation for the mean energy is rather simple and
includes only two additional terms,

∂

∂t
(Sρe) = − ∂

∂r
(Sρev) − p

∂

∂r
(Sv)

+Sρ

(

ǫ − ∂L + Lconv

Sρ∂r

)

+ SρWconv, (26)

where

Lconv = ṁ(hu − hd) =
1

2
Sρu(hu − hd), (27)

Wconv =
1

2
u(

1

ρu

− 1

ρd

)
∂p

∂r
. (28)

Here h = e + p/ρ is the enthalpy and u = 2ṁ/(Sρ) is the
mean convective velocity.
Note that the convective luminosity Lconv naturally appears
as an enthalpy flux.
The term Wconv can be interpreted as the work done by the
buoyancy forces. Because the pressure is decreasing upward,
and usually ρu < ρd, it always provides a sink term for the
energy.

Note that this approach cannot be used to write down
a general equation for the entropy because the thermody-
namic relations are only valid for the up and down streams
separately but not for the mean fluid. We will derive an en-
tropy equation later in the one-flow limit (see section 4.3).

2.2.4 Chemistry

The equation for the mean abundances is

∂

∂t
(SρN) = − ∂

∂r
(SρNv) + SρR − Sρ

∂

∂m
Fconv, (29)

where

SρN = SuρuNu + SdρdNd (30)

and

Fconv = ṁ(Nu − Nd), (31)

which we interpret as a diffusion flow in section 2.5.

2.2.5 Mean specific equations

We now summarise all of the mean equations derived in the
previous section in their specific form (i.e. per unit mass),
where we use the notation Dx

Dt
= ∂x

∂t
+ v ∂x

∂r
and div(x) =

1

S
∂Sx
∂r

:

1

ρ

Dρ

Dt
= −div(v), (32)

Dv

Dt
− 2

v2

r
= −1

ρ

∂p

∂r
− Gm

r2
+ Xconv , (33)

De

Dt
+ p

D

Dt
(
1

ρ
) = ǫ − ∂L

∂m
− ∂Lconv

∂m
+ Wconv (34)

and

DN

Dt
= R − ∂

∂m
Fconv (35)

with

Xconv ≃ − 1

Sρ

[

Su

∂

∂r
(ρuv2

u) + Sd

∂

∂r
(ρdv2

d)
]

, (36)

Lconv = ṁ(hu − hd), (37)

Wconv =
1

2
u

(

1

ρu

− 1

ρd

)

∂p

∂r
, (38)

and

Fconv = ṁ(Nu − Nd). (39)

These equations are the usual equations of radiative
stellar evolution with additional terms due to the differen-
tial motions in the two fluids. The latter terms depend on
the convective velocities vu and vd, as well as on differences
between quantities in the two flows. We derive equations for
the mean convective velocities and those differences in the
one flow limit in section 2.4.

2.3 Specific equations

We first rewrite the conservation equations in their specific
form. This will allow the derivation of the equations in the
one-flow limit when we take the difference between the spe-
cific equations for the up and down motions.

2.3.1 Momentum

∂

∂t
(v + vu) + (v + vu)

∂

∂r
(v + vu) − (v + vu)2

1

Su

∂Su

∂r
=



Formalism for the convective Urca process 5

− 1

ρu

∂p

∂r
− Gm

r2
+

1

Suρu

[Q̇ − Ṁ(v + vu)] (40)

and

∂

∂t
(v − vd) + (v − vd)

∂

∂r
(v − vd) − (v − vd)2

1

Sd

∂Sd

∂r
=

− 1

ρd

∂p

∂r
− Gm

r2
− 1

Sdρd

[Q̇ − Ṁ(v − vd)]. (41)

2.3.2 Energy

∂eu

∂t
+ (v + vu)

∂eu

∂r
+ p

[

∂

∂t

1

ρu

+ (v + vu)
∂

∂r

1

ρu

]

=

ǫu − 1

Suρu

∂Lu

∂r
+

1

Suρu

(Ė − Ṁhu) (42)

and

∂ed

∂t
+ (v − vd)

∂ed

∂r
+ p

[

∂

∂t

1

ρd

+ (v − vd)
∂

∂r

1

ρd

]

=

ǫd − 1

Sdρd

∂Ld

∂r
− 1

Sdρd

(Ė − Ṁhd) . (43)

2.3.3 Chemistry

∂Nu

∂t
+ (v + vu)

∂Nu

∂r
= Ru +

1

Suρu

(Ṅ − ṀNu) (44)

and

∂Nd

∂t
+ (v − vd)

∂Nd

∂r
= Rd − 1

Sdρd

(Ṅ − ṀNd). (45)

2.4 The difference equations in the one stream
limit

In the following we make the approximation that the relative
difference of a quantity between the two streams is small. For
each quantity x we write xu = x + ∆x and xd = x − ∆x
with ∆x ≪ x. We note that the previously defined mean
convective velocity u is in fact the arithmetic mean of vu

and vd. Hence, we write vu = u + ∆u and vd = u − ∆u.
In contrast, we keep the former definition for S as the total
surface of the shell of radius r so that Su = 1

2
S + ∆S and

Sd = 1

2
S − ∆S. We then compute the difference of the spe-

cific equations (40)–(45) between the two fluids and neglect
second order terms in the ∆ quantities.

In this approximation, the averages defined in section
2.2 above are all arithmetic means. We also note that the
standard thermodynamic relations hold for the ∆ quantities,
which greatly helps when deriving the entropy equation (see
section 4.3).

Equation (2) yields

2
∆S

S
+

∆ρ

ρ
+

∆u

u
= 0 (46)

and this allows us to eliminate ∆S in what follows. It can be
thought of as the equation governing the convective motions
with u as the convective velocity.

2.4.1 Mass

Taking the difference between equations (3) and (4) and
using equation (32) we find

D

Dt

(

∆u

u

)

=
1

Sρ

∂

∂r
(Sρu) − 2Ṁ

Sρ
. (47)

This equation describes the evolution of the asymmetry ∆u
of the drift motions relative to the mean velocity v.

2.4.2 Momentum

The difference between equations (40) and (41) yields

Du

Dt
+ u

(

∂(v + 2∆u)

∂r
− 4

v + ∆u

r

)

=

∆ρ

ρ2

∂p

∂r
− (v2 + u2)

∂

∂r

(

∆ρ

ρ

)

−v2 ∂

∂r

(

∆u

u

)

+
2

Sρ
[Q̇ − Ṁ(v + 2∆u)]. (48)

This equation describes the time evolution of the convective
velocity u. The main source term is the acceleration due to
the buoyancy force while the main sink term comes from the
momentum exchange term between the two flows.
Apart from the ∆u terms, −(v2+u2) ∂

∂r
(∆ρ

ρ
) is the only non-

local term. That is it is the only term that involves spatial
derivatives of convective properties.

2.4.3 Energy

The difference between equations (42) and (43) yields

D∆e

Dt
− p

D

Dt

(

∆ρ

ρ2

)

+ u

(

∂e

∂r
+ p

∂

∂r

1

ρ

)

=

∆ǫ + 2
∆u

u

∂L

∂m
+ 2

∂∆L

∂m
+

2

Sρ
(Ė − Ṁh). (49)

This equation implicitly determines the time evolution of
the temperature difference between the two flows as we show
in section (3.1). Note that the ∆ǫ term may help to either
increase or decrease such a temperature difference, depend-
ing on the temperature dependence of the energy genera-
tion rate. The other non-local term in the energy equation,
2∂∆L

∂m
, accounts for differenital thermal diffusion along the

two columns of fluid.

2.4.4 Chemistry

The difference between equations (14) and (15) yields

D∆N

Dt
+ u

∂N

∂r
= ∆R +

2

Sρ
(Ṅ − ṀN). (50)

This equation describes the evolution of the chemical compo-
sition difference between the two flows. In some situations,
the temperature dependence of the nuclear reaction rates
may affect this difference through the ∆R term.
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2.5 A model for the exchange terms

All horizontal motions and transport phenomena are mod-
elled through the exchange terms. These need to be specified
to close the two systems of equations (32)–(35) and (47)–
(50). With these, the equations provide a complete time-
dependent model for convection which guarantees the con-
servation of mass, momentum, energy and chemical trans-
formations. Most of the existing convective models provide
approximations for these exchange terms. Here we present
a simple, somewhat ad hoc, but physically plausible choice
for these exchange terms,

Q̇ = −(vu + vd)ṁ/λ + Ṁv, (51)

Ė = (hd − hu)ṁ/λ + β
χ

uλ
cp(Td − Tu)

ṁ

λ
+ Ṁh, (52)

and

Ṅ = (Nd − Nu)ṁ/λ + ṀN. (53)

The first terms in these expressions account for momentum,
energy and chemical exchanges without any net transfer of
mass. They are designed to mix the two fluids on a length
scale λ. The second term in the energy exchange equation
(52) accounts for horizontal heat diffusion across the edges
of the streams. The parameter β is a form factor which fixes
the ratio of the perimeter of the streams to their separation
times S/λ2. We use β = 9/2 to recover the exact formula-
tion of classical mixing-length theory (MLT; Böhm-Vitense
(1958) as presented in Kippenhahn & Weigert (1990)). The
last terms in expressions (51)–(53) are the fluxes due to a
net transfer of mass Ṁ from one stream to the other. Such
transfer must exist at the outer boundaries of a convective
zone where the fluid effectively makes a U-turn.

There is no obvious, simple physical prescription for Ṁ
so we make the assumption that u = vu = vd and convective
motions are symmetric with respect to the mean velocity v.
This approximation is in fact implicit in almost all convec-
tive models to date. The term Ṁ is then given by equations
(2)–(4) as

Ṁ =
∂ṁ

∂r
. (54)

We now have a complete time-dependent description of the
convective properties of the flow and can investigate the
characteristics of this model.

3 COMPARISON WITH EXISTING MODELS
FOR CONVECTION

In this section we consider the approximations made in a
number of theories of convection. Using the same assump-
tions, we derive the equations for the convective motions in
our framework and emphasise the characteristics that are
peculiar to our formalism.

3.1 Mixing length theory

Mixing length theory (MLT) assumes a stationary state for
convection and makes the quasi-static approximation, v ≃ 0.
In this case, all D

Dt
terms can be set equal to zero in the

difference equations. In addition, we set ∆u, ∆ǫ, ∆L and

∆R to zero because the processes that lead to these terms
are usually neglected in MLTs. We also neglect the non-local
term in the momentum difference equation. The difference
equations then simplify to

∆ρ

ρ2

∂p

∂r
= 2

u2

λ
, (55)

∂e

∂r
+ p

∂

∂r

1

ρ
= −2

∆h

λ
− 2β

χcp∆T

uλ2
and (56)

∂N

∂r
= −2

∆N

λ
. (57)

Note that equation (55) is not exactly the same as in
classical MLT : there is usually a factor of 1/2 multiplying
the left hand side of this equation to account for the fact
that half of the work done by the buoyancy force is used
to push aside the surrounding medium when a convective
element rises.

From these equations we extract the convective velocity,
the temperature and chemical differences between the two
streams (see appendix A1.1 for a detailed derivation). These
can now be used to express the convective terms in the mean
equations,

Xconv = −1

ρ

∂

∂r
(ρu2), (58)

ṁ =
1

2
Sρu, (59)

Lconv = ṁ(cp∆T + µ
′.∆N), (60)

Wconv = −u3

λ
and (61)

Fconv = 2ṁ∆N (62)

where µ
′ = T ( ∂s

∂N
)T,p + µ and µ is the chemical potential

(see appendix A1.1).
With these equations, we have derived a MLT that

is consistent with chemistry. While the excess temperature
equation is unchanged, the convective velocity now depends
on the chemical stratification (through the cubic A5) and
so does the convective luminosity. There is also an addi-
tional work term due to the fact that we assume a reversible
process for the momentum exchange (see section 3.3). We
also obtain an explicit change in the condition of hydro-
static equilibrium owing to convection. Finally, convection
naturally appears as a diffusion process for the chemistry.

3.2 Unno (1967)

If we include the D/Dt terms in equations (55) and (56)
and further neglect the chemistry dependence of the con-
vective luminosity and velocity we immediately recover the
same time-dependent version of MLT as Unno (1967) for the
excess temperature and the convective velocity.

3.3 Kuhfuss (1986)

Kuhfuss (1986) only computes the evolution equation for the
convective velocity. He uses a diffusion model to compute the
correlations between velocity perturbations and any other
perturbation. This model is recovered in our formalism if
we set D

Dt
≡ 0 and ∆R = ∆ǫ = ∆L = 0 in the difference

equations for energy and chemistry.
Furthermore, each term of his equation (25c) for the
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convective kinetic energy corresponds to one term in our
equation (48), except that his non-local term 1

<ρ>
divjt is

different from ours (see paragraph 3.5), and we do not ac-
count for his viscous terms (we assumed an inviscid fluid).

Finally, if we compare our equation for the average in-
ternal energy of the gas, we note that our model misses the
heat production owing to dissipation of convective motions.
This is due to the fact that we assume a reversible exchange
of momentum so that there is no associated heat production.
In contrast, Kuhfuss (1986) assumes viscous dissipation for
the convective motions.

3.4 Eggleton (1983)

Eggleton (1983) uses his rule of thumb to average the hydro-
dynamical equations in order to get evolution equations for
the mean fluid and the perturbed quantities. He then obtains
a full set of equations that can be identified with our mean
and difference equations. Our formalism agrees fairly well
with this rule of thumb and hence provides a more physical
basis for it.

We can recover almost the same equations if we set
∆u = 0. The local models differ only in the mean energy
equation because Eggleton neglects the thermal part of the
chemical potentials. However, those terms are important
when beta decays or electron captures occur in degenerate
matter.

As for the non-local terms, ∂∆L
∂m

in the energy difference
equation takes the same form of the term in equation (41)
of Eggleton (1983) that accounts for the thermal diffusion
through the front and back of the eddies. However, our non-
local term in the momentum difference equation does not
agree with equation (42) of Eggleton (1983) for the velocity
perturbation.

An interesting point is that Eggleton (1983) found a
term similar to our ∆R term. We have shown that an addi-
tional term ∆ǫ enters into the energy equation. These terms
account for differential reactivity in the two streams. How-
ever, our stationary computations show that these effects are
negligible as far as the convective Urca process is concerned
(see section 6).

3.5 Grossman et al. (1993)

Grossman et al. (1993) use the Boltzmann equation cou-
pled with dynamical equations to compute a hierarchy of
moments for the hydrodynamical equations. In their frame-
work, our formalism can be recovered if we specify the dis-
tribution function of the blobs as

fA(t, z, v, T ) =
1

S
[Suρuδ(v+vu, Tu)+Sdρdδ(v−vd, Td)]. (63)

This allows a direct comparison between the two formalisms.
With this definition, our variables v, ρ and T correspond to
their variables v̄, ρ̄, and T̄ .

The zeroth-order equations of their hierarchy can be
directly compared with our mean equations. The velocity
equation is found to differ by terms negligible in the subsonic
regime. Their temperature equation without chemistry has
an additional source term due to viscous dissipation just as
Kuhfuss (1986). Their temperature equation with chemistry
misses correction terms in the luminosity, the work term

and the source term. This is due to their use of a dynami-
cal equation for the entropy which does not account for the
changes owing to chemical evolution. This suggests that en-
ergy conservation may not hold in their case when chemistry
is included.

Their higher-order equations can also be compared with
our difference equations, although this is less straightfor-
ward. We did such a comparison but only for the velocity
difference equation. We then obtain the same non-local term
as Kuhfuss (1986): their 1

ρ̄
∂
∂z

(ρ̄w̄3) corresponds to 1

<ρ>
divjt

of Kuhfuss (1986). If we substitute our distribution function
fA in this term, we obtain

2

ρ

∂

∂z
(ρu2∆u) (64)

which should be compared to our

2u2 ∂∆u

∂r
+ u3 ∂

∂r

∆ρ

ρ
(65)

when v = 0. Our term contains ∆ρ and theirs contains the
spatial derivative of the convective velocity. On the other
hand, our treatments agree as far the chemical dependence
of the convective velocity is concerned.

4 THE CONVECTIVE URCA PROCESS

In this section we first present the basic nuclear reactions
responsible for the Urca process. Because previous studies
have mainly concentrated on the entropy equation we derive
it in our formalism and then examine the influence of the
Urca nuclei on convection.

4.1 Urca reactions

Urca reactions involve pairs of nuclei of the form (Z+1

A M,ZAD)
where A is an odd number. The member of a pair with an
additional proton is called the mother (M), while the other
one is referred to as the daughter (D). Electron capture and
beta decay turn one into the other :

Electron capture : M + e− → D + ν (66)

Beta decay : D → M + e− + ν̄ (67)

Tsuruta & Cameron (1970) give the reaction rates for
electron capture and beta decay λ+ and λ− per nucleus.
They also provide the corresponding neutrino losses L+ and
L− per nucleus. The typical time-scale for Urca reactions is
105 s. These reaction rates depend mainly on the chemical
potential µe of the electrons. This is mainly on the mass
density ρ of the degenerate matter. Each Urca pair has a
threshold energy µth above which significant electron cap-
tures can occur. We approximate the Coulomb corrections
to these threshold energies in the same way as Gutiérrez et
al. (1996). When µe > µth (i.e. ρ > ρth) electron captures
quickly turn the Urca matter into daughter nuclei. When
µe < µth (i.e. ρ < ρth) beta decays quickly turn it into
mother nuclei. When µe ≃ µth (ρ ≃ ρth) both reactions are
significant and the Urca matter quickly evolves into a mix-
ture of mother and daughter nuclei. A shell on which ρ = ρth

is called an Urca shell.
When the Urca matter is in chemical equilibrium both

reactions take place at the same rate, which is highest near
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the location of the Urca shell. Because both reactions emit
neutrinos, this leads to neutrino cooling which is strongest
at the Urca shell. When the Urca matter is far from equilib-
rium, nuclear heating takes place at the same time and usu-
ally dominates over the neutrino cooling (see Bruenn 1973,
and section 4.3.1 below).

The pair 23Na/23Ne is a typical example and perhaps
the most active Urca pair in massive white dwarfs. Its
threshold energy is µth = 4.38 MeV, which corresponds to
ρth = 1.7 × 109 g.cm−3 in purely degenerate matter. This
density is slightly below the density for carbon ignition in
a C+O white dwarf accreting at a rate of 10−7 M⊙yr−1.
As a consequence, the growing convective core soon engulfs
the corresponding Urca shell after carbon has ignited in the
centre.

Here we assume that the stellar matter contains a fixed
number NU of Urca nuclei (per unit mass) of a given pair. We
define NM and ND as the corresponding number of mother
and daughter nuclei so that NU = NM + ND. Then the
rate of change of mother and daughter nuclei per unit mass
becomes

RM = −RD = −λ+NM + λ−ND. (68)

If we write N∗
M = NUλ−/(λ+ +λ−) = NU−N∗

D as the num-
ber of mother nuclei per unit mass at chemical equilibrium
we can rewrite the reaction rate as

RM = −(λ+ + λ−)(NM − N∗

M). (69)

Useful explicit expressions for the various thermody-
namical properties of the Urca nuclei are

µM = (Z + 1)µe + kT (a + lnNM), (70)

µD = Zµe + kT (a + lnND), (71)

µ′

M ≃ (Z + 1)µe +
1

2
kT, (72)

µ′

D ≃ Zµe +
1

2
kT, (73)

µ′′

M = −(Z + 1)NM/Neand (74)

µ′′

D = −ZND/Ne, (75)

where Ne is the total number of electrons per unit mass, k
is the Boltzmann constant and a is a combination of tem-
perature and density logarithms (see Pols et al. 1995). The
approximations for µ′

M and µ′
D are obtained by neglect of the

electron and radiation contributions to the entropy. In the
strongly degenerate case the kT terms are usually negligible.

4.2 Convective velocity

In appendix A (equation A8) we derive the approximation
which relates the convective velocity to the temperature and
chemical gradients

u = u1

√

δ(∇−∇a) − µ′′.∇∇∇N, (76)

where the term depending on the Urca process is

µ
′′.∇∇∇N = − 1

Ne

[(Z + 1)NM∇M + ZND∇D]. (77)

Since NU is assumed to be uniform, NM∇M + ND∇D = 0.
Hence relation (77) becomes

µ
′′.∇∇∇N = −NM

Ne

∇M. (78)

Electron captures are much stronger in the centre of the star
than in the outer regions so the mother fraction generally
increases outwards, µ

′′.∇∇∇N > 0 and the effect of the pres-
ence of Urca pairs is to reduce the convective velocity. In
sections 4.4 and 5 we show that this effect can actually be
quite strong and may even inhibit convection. Note that, in
the case where NU is not uniform, the sign of the µ

′′.∇∇∇N

term may change.

4.3 Entropy equation

One of the biggest uncertainties in previous models for the
convective Urca process was the form of the equation for
the evolution of the entropy s in the presence of convection.
Here we derive the entropy equation in the one-flow limit.
The small ∆ approximation allows us to use thermodynamic
relations for the mean fluid and we can transform the left-
hand side of equation (34) so that

T
Ds

Dt
+ µ

DN

Dt
= ǫ − ∂L

∂m
− ∂Lconv

∂m
+ Wconv. (79)

We then use equation (35) and the relation ∆h − µ.∆N =
T∆s (because ∆p = 0) to write the equation for the mean
entropy as

T
Ds

Dt
= ǫ′ − ∂L

∂m
− ∂L′

conv

∂m
+ W ′

conv, (80)

where we define

ǫ′ = ǫ − µ.R, (81)

L′

conv = 2ṁT∆s (82)

and

W ′

conv = Wconv − 2ṁ∆N.
∂µ

∂m
. (83)

The entropy equation then takes a form that is similar to
the energy equation but with different definitions for the net
heating, the convective luminosity and the work. We next
consider how these terms are affected by the chemical state
of the Urca matter.

4.3.1 Net heat generation

The net heating due to Urca reactions is

ǫ′U = µthRM − L+NM − L−ND − µMRM − µDRD. (84)

In the very degenerate case, µM ≃ (Z +1)µe and µD ≃ Zµe,
we obtain

ǫ′U = NUC + (NM − N∗

M)H, (85)

where

C = −L+λ− + L−λ+

λ+ + λ−
(86)

H = −L+ + L− + (µe − µth)(λ+ + λ−). (87)

In figure 2 we plot |C| and |H | for the Urca pair 23Na/23Ne.
The net Urca heating ǫ′U is the sum of two terms. At chem-
ical equilibrium, only the first term remains. This is always
negative and so causes cooling. The sign of the second term
depends on the signs of NM−N∗

M and H . The term NM−N∗
M

is likely to be positive below the Urca shell and negative
above it. The value of H has the same sign except close
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C

H

Figure 2. Functions |H| (solid and dotted lines) and −C (dashed
line) for the 23Na/23Ne Urca pair at a temperature of 3× 108 K.
The solid portions of |H| indicate where H and NM − N∗

M
have

the same sign (heating) and dotted otherwise (cooling).

to the Urca shell. Hence, the second term (NM − N∗
M)H is

positive, implying heating, except close to the Urca shell.
The relative magnitude of the second to the first term

is proportional to the departure from chemical equilibrium
(NM−N∗

M)/NU. One can see from figure (2) that the heating
can be balanced by neutrino losses only if the system is
close to chemical equilibrium because, generally, |H | ≫ |C|.
In a convective region mixing puts the Urca abundances
slightly (or strongly if convection is very efficient) outside
equilibrium. The amount of convective mixing is therefore
crucial for computing the net Urca heating. Generally, the
net effect is cooling close to the Urca shell and heating far
away from it.

4.3.2 Convective luminosity

The contribution to L′
conv associated with the Urca pairs is

L′

U = 2ṁ(µ − µ
′).∆N = 2ṁkT ln(ND/NM)∆NM. (88)

The quantity one needs to compare with ǫ′U and W ′
conv is in

fact the mass derivative of the luminosity
∂L′

U

∂m
. This term is

usually negligible in the very degenerate case. However, at
convective boundaries, the derivative ∂ṁ

∂m
can be large and

make this term relatively more important.

4.3.3 Work term

Here we compute the contribution of the Urca pairs to the
work term in the entropy equation,

W ′

U = 2ṁ∆N.
∂µ

∂m
= 2ṁ∆NM

∂µe

∂m
. (89)

Because the Urca matter is richer in mother nuclei in the
outer parts of the star, ∆NM > 0, and because the density
is decreasing outwards, µe is decreasing outwards. Hence,
W ′

U is always negative.
We note that W ′

U = FM
∂µe

∂m
is identical to the work term

Iben (1978b) designed for his computations although he uses

it in the energy equation and does not specify what convec-
tive velocity or luminosity he adopts.
Finally, no heat production is associated with our chem-
ical exchange model. Indeed, we assume that a reversible
process is responsible for the mixing of chemical species be-
tween both streams. An irreversible process for this chemical
mixing could give rise to a heating term which could balance
part (or all) of this additional work term.

4.4 Criterion for convection at the centre of the
star

Let us now assume that we know the composition, tempera-
ture and density at the centre of a star. We can then derive a
criterion for whether there is stationary convection and de-
duce an upper bound to the amount of mixing at the centre
of a convective Urca core.

We consider a very small sphere of mass m at the centre
of the star. In a stationary state the total luminosity at
the edge of this sphere must balance the energy production
inside the sphere. If we assume that all the energy is carried
out by convection we can write the convective luminosity

ǫm = Lconv = 2∆hṁ = 2(cpT∆ln T + µ
′.∆N)ṁ. (90)

We obtain a similar expression for the net number of parti-
cles of each kind flowing away from this sphere

Rm = Fconv = 2∆Nṁ. (91)

Combining these two equations we obtain the density
difference at the edge of the sphere

∆ ln ρ =
m

2ṁ

(

−δ
ǫ − µ

′.R

cPT
+
∑

j

mu′′
j Rj

Nj

)

. (92)

A stationary convective state exists at the centre if and
only if ∆ρ < 0. This translates into an upper limit for the
mother fraction at the centre of an Urca convective core.
Using the relations µ′

j ≃ Zjµe and µ′′
j = −ZjNj/Ne, where

Ne is the number of electrons per unit mass, we obtain

NM−N∗

M < δ
ǫ∗

cPT

(

λ+ + λ−

Ne

− δH

cPT

)−1

= NL = AXL,(93)

where ǫ∗ is the net heating at Urca chemical equilibrium
(equal to the heating from carbon burning at the centre) and
NL and XL are defined by equation (93). XL is the minimum
mass fraction of Urca pairs which has a significant effect on
convection. It generally has a fairly small value (see figure
3).

When NU ≫ NL the Urca pairs must be close to chem-
ical equilibrium. In other words, the convective core can be
only very slightly mixed. But if they were in chemical equi-
librium carbon burning alone would produce a large buoy-
ancy and hence drive strong mixing. Therefore, the Urca
composition has to adjust itself to balance the heat from
carbon burning and produce almost zero convective veloci-
ties. Hence, the inequality (93) is nearly an equality in prac-
tice and NM − N∗

M ≃ NL, a result that is verified in our
simulations of stationary convective cores (see Section 5.3).
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Figure 3. XL (solid line) and ρ (dotted line) against µe − µth

for the 23Na/23Ne Urca pair at a temperature of 3 × 108 K.

5 STATIONARY CONVECTIVE URCA CORES

If we set all ∂
∂t

derivatives equal to zero in equations (3)–
(15), we obtain a system of coupled ordinary differential
equations. If we specify the state variables at the centre of
the star, we can integrate these equations outward, using
a shooting method, and calculate the hydrostatic profile of
the star.

To obtain a guess for the state variables at the centre,
we run a very simple time-dependent model of an accret-
ing white dwarf without Urca nuclei. We then compute the
stationary state of stationary convective cores for different
Urca compositions and different versions of our convective
model.

5.1 Time-dependent model

We used the Eggleton (1971) stellar evolution code to calcu-
late the evolution of a white dwarf, composed entirely of 12C,
16O and 20Ne (with mass fractions 12C = 0.25, 16O = 0.73,
20Ne = 0.02) accreting matter at a rate of 10−7M⊙/yr.
The initial mass was taken as 1 M⊙. Only the carbon-
burning reaction 12C(12C,α)20Ne immediately followed by
12C(α,γ)16O was taken into account. The convective model
used in the Eggleton code is standard MLT and we use the
approximate equation of state of Pols et al. (1995) assuming
complete ionisation.

We stop the computation during the carbon flash when
the convective core has reached a mass of 0.4 M⊙. We plot
the convective velocity of this core against mass in figure
(4). At this point, the threshold density for the 23Na/23Ne
Urca pair is in the middle of the convective core. The central
density is 2.6 × 109g.cm−3 and the central temperature is
3.1 × 108 K.

If we were to integrate the equations of hydrostatic equi-
librium from this central state using MLT, we would obtain
a fully convective star. The reason is that the core is actually
being heated and that the term T Ds

Dt
is non-zero. This term

is negligible in the carbon-burning region but is significant
in the outer part of the convective region. However, the ef-

Ds
Dt

T

Stationary model

Time-dependent model

Figure 4. Convective velocity profile through the core. The solid
line is for the time-dependent simulation and the dashed line is
for the hydrostatic simulation. We also plot T Ds

Dt
in the time-

dependent simulation (dotted line).

fect of convection is to homogenise the entropy profile and
so T Ds

Dt
is rather uniform in the convective region. We can

therefore use its value to offset the nuclear heating when we
compute the hydrostatic profile. This brings the stationary
convective profile very close to the time-dependent one (see
figure 4).

5.2 The shooting method

Setting all the ∂
∂t

terms to zero in the equations for the two
streams, we obtain a system of coupled ordinary differential
equations, which we integrate numerically from the centre
of the star. As central boundary conditions for temperature,
density, C, O and 20Ne mass fractions we take the results of
the time-dependent model. For each value of NU, we make
an initial guess for the number density NM. The estimate
for NM is then iteratively improved by successive outward
integrations until the condition ∆NM = 0 is satisfied at the
outer edge of the convective region.

5.3 Results

We compute stationary convective cores for different mass
fractions of Urca pairs XU = 23 × NU = 0 , 10−12, 10−9,
10−8, 10−6, 10−3. A value of XU = 10−3 would require a
very efficient conversion of 20Ne into Urca pairs and hence
gives a reasonable upper limit for the possible abundance of
Urca pairs.

5.3.1 Without Urca nuclei

For a pure C+O+20Ne mixture, we compare the velocity
profiles of the stationary convective core given by MLT and
the two-stream model (TSM). In the TSM, we first set the
work term Wconv equal to 0. Figure (5) shows that the ve-
locities differ by a factor of

√
2. This is the only difference

between the two models and it can be traced back to the fac-
tor 2 in equation (55). Indeed, MLT has a factor 4 instead
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TSM (work)

TSM (no work)

MLT (work)

MLT (no work)

Figure 5. Convective velocity profile of different models of sta-
tionary cores without Urca nuclei. Solid and dashed lines are for
MLT and TSM models with viscous dissipation of momentum.
Dotted and dash-dotted lines for MLT and TSM models with the
work term Wconv.

because it assumes that half of the work done by the buoy-
ancy forces is used to push aside the surrounding medium
when a convective element rises.

When we put the work term back in MLT or TSM the
resulting convective core shrinks. Less convection is needed
to carry out the C burning energy. This is not surprising
because adding the work term is equivalent to suppressing
the viscous heat produced by the dissipation of the drift
motions.

5.3.2 Very low Urca abundance

For XU < 10−9, the Urca nuclei do not have an impact on
the convective velocity. They are mixed passively through
the convective region. Figure 6 shows the relative abundance
of mother nuclei NM/NU in both streams. Mother nuclei
come from above the Urca shell. They capture electrons as
they descend below the Urca shell and are converted into
daughter nuclei. As these rise back above the Urca shell,
they emit electrons and the number of daughter nuclei rises
again. Finally, they cycle back down through the Urca shell.

The maximum relative difference of composition be-
tween both fluids is 17%. This suggests that the one-stream
approximation may well be adequate.

5.3.3 High Urca abundance

For XU > 10−8 ≃ XL our shooting method is not able to
find a stationary state. When the mother mass fraction at
the centre is too high the relative composition difference
diverges as the convective velocity tends to zero. When it
is too low the convective velocity reaches a minimum and
then rises again up to the edge of the white dwarf. Figure 7
shows the convective velocity profiles in the latter case and
demonstrates how drastically the Urca nuclei can affect the
velocity profile.

We illustrate this effect by plotting the density differ-

mean

Downward moving fluid

Upward moving fluid

Figure 6. Fraction of mother nuclei XM/XU against mass in
the upward and downward moving streams for XU < 10−9. The
mean is also indicated. The model is the two-stream model (TSM)
including the work term.

10

-910

-12
X   =10U

-8
10

-6
10

-3

Figure 7. Convective velocity profile of different models of sta-
tionary cores with Urca nuclei. The different values for XU (the
total mass fraction of Urca nuclei) are indicated next to each
curve.

ence ∆ ln ρ in figure 8 for a case where XM at the centre is
too low. Indeed, the density difference controls the buoyancy
force and hence the convective velocity. This figure shows the
competing dependence of ∆ ln ρ on the temperature and on
the chemistry (the Urca nuclei). As was previously noted
in section 4.2, the chemical part of the density difference is
positive and stabilises convective motions. In the outer parts
of the convective region the temperature and chemical de-
pendence cancel each other to yield a very small convective
velocity. This suggests that the criterion for semi-convection
might be fulfilled in the region just above the point where u
vanishes.

In degenerate matter the mass density is tied to the
electron abundance. Hence, all reactions that change the
number of electrons have an effect on the buoyancy. The
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Figure 8. Density difference ∆ ln ρ through the convective core
for a low central mother fraction case. ∆ ln ρ = −δ∆ ln T +
µ′′.∆lnN. It is the sum of a temperature-dependent term
and a chemistry-dependent term. We plot −δ∆ lnT (solid line),
µ′′.∆lnN (dashed line) and ∆ ln ρ (dotted line).
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ε’U
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Figure 9. Quantities ǫ′
U

(solid),
∂L′

U

∂m
(dotted) and W ′

U
(dashed)

are plotted for a low central mother fraction case of model XU =
10−3 (TSM with work term). The total net energy generation
rate is greater than 5 × 104 erg.g−1.s−1. It is dominated by the
energy generation due to carbon burning.

terms ǫU,
∂L′

U

∂m
and W ′

U seem to be of secondary importance
compared to the change in the convective velocity. We plot
them in figure 9. They are relatively unimportant compared
to the energy generation rate due to carbon burning.

6 DISCUSSION

In principle the formalism we have derived is sufficiently gen-
eral that it can be used with any model for the exchange (or
diffusion) between the two streams. It automatically guar-
antees conservation of the chemical species and energy and
allows time dependence. The formalism also accounts for
the interactions between the global contraction or expansion

(with velocity v) of the star and the convective (or drifting)
velocity u. In fact, the drifting velocities for the upward and
downward motion (vu and vd) do not even have to be equal.

But it is only a formalism and requires a model for all
horizontal motions/exchanges. In section 2.5 we suggested a
model that is easy to implement and which can be used to
compare our new formalism with previously derived theories
of convection. However, this has a few limitations.

First, we used a very simple model (where ∆u was set
equal to zero) for the net mass transfer Ṁ between the up-
ward and downward moving fluids. This eliminates the main
non-local terms involving ∆u in equation (48) and hence dis-
ables the effects of convective overshooting. To account for
overshooting in a self-consistent way requires an a priori
physical model for the exchange term Ṁ . However, one can
investigate the effects of overshooting within our framework
by using a necessarily somewhat ad hoc prescription for the
convective velocity which allows a finite convective speed be-
yond the formally convective region according to the Ledoux
criterion.

Second, we chose reversible processes for the exchange
of momentum and the mixing of chemical species. Irre-
versible processes would dissipate part (if not all) of the
work done as heat. The cooling terms Wconv and W ′

U would
then have lower (possibly zero) values. For example, the
Reynolds numbers in convective regions are so large that
there is almost certainly a large amount of turbulence. To
account properly for turbulent dissipation in the derivation
of our model would require the inclusion of a finite viscos-
ity introduced by the turbulent cascade. This is not easily
done. However, one can investigate the possible outcome of
dissipation by switching the work terms on and off. In sec-
tion 5.3.1 (Figure 5), we investigated the effect of setting
Wconv = 0 and found differences of up to 20%. Furthermore,
setting W ′

U = 0 would most likely only have a small effect
because W ′

U is already small.

6.1 Stationary cores

As a first illustration of our two-stream formalism we com-
puted stationary convective cores. However, the convective
core during the carbon flash is growing very rapidly. In-
deed, the time dependence does matter at least in the en-
ergy equation, as was shown in section 5.1. Our stationary
cores may therefore only be very rough approximations of
growing convective cores. Moreover, in the present study we
used arbitrary abundances for the Urca nuclei. Most of the
Urca nuclei are by-products of carbon burning. To compute
their abundances in a self-consistent manner involves quite
an extended network, as was shown by Iben (1978a).

Despite these limitations, the results already help to
shed some light on the convective Urca process and prove
useful in calibrating numerical aspects in the implementa-
tion of the method. For example, the terms ∆R, ∆ǫ, and
∆L, as well as the non-local term in equation (48), are found
to be second order terms in our computations of stationary
Urca cores. Furthermore, the chemical composition differ-
ences between the two streams are generally small, except
possibly at the outer edge of a convective core with a high
Urca abundance. This may provide some justification for the
use of the one-stream approximation to describe the convec-
tive Urca process in a stellar evolution code.
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6.2 Future work

The next step is to implement the two-stream model (or
a more simple, but appropriate approximation) in a stellar
evolution code. Coupled with a suitable nuclear reaction net-
work, this will allow us to follow the evolution of the core in
a fully self-consistent manner to the runaway phase in a SN
Ia and to determine the physical and chemical conditions in
the core at the time of the explosion. This will provide the
ignition conditions, the thermodynamic properties and the
location of the ignition point for explosion calculations (e.g.
Hillebrandt et al. 2004). Moreover, with this tool, we shall
be able to systematically address the dependence of the ig-
nition conditions on the overall metallicity, the initial C/O
ratio, the white dwarf accretion rate, the initial mass of the
white dwarf etc.

In this context, we note the importance of the neutron
excess at the time of the explosion. Timmes, Brown & Tru-
ran (2003) have recently emphasised the role of the initial
22Ne abundance, which they argued was determined by the
metallicity, introducing a metallicity dependence for SNe Ia.
However, the neutron excess itself is affected by the elec-
tron captures and emissions in the simmering phase preced-
ing the nuclear runaway. If we take as indicative the Urca
abundances derived by Iben (1982) (table 4) at the end of
his computations, we can compute the number of additional
neutrons introduced by the Urca reactions alone on Ne iso-
topes, nU = 3Y (23Ne) + 5Y (25Ne) = 3.6 × 10−3. The cor-
responding number of additional neutrons caused by 22Ne
resulting from solar abundances in the white dwarf progeni-
tor is n⊙ = 2Y⊙(22Ne) = 2.5× 10−3. Hence the effect of the
Urca isotopes of Ne on the neutron excess can be even larger
than that of fossil 22Ne. This provides another illustration
for the importance of a proper treatment of the Urca process
for answering some of the fundamental, unsolved questions
concerning SNe Ia.

7 SUMMARY AND CONCLUSIONS

We have derived a two-stream formalism which carefully ad-
dresses the energy and chemical budgets in a convective re-
gion. In addition, it allows time dependence and describes
the interaction of convection with the general motions of
the star. We illustrated this formalism with a simple model
and compared the resulting theory of convection to existing
theories. We also derived a one-stream limit approximation
which will be easy to implement in a stellar evolution code
as an extension of classical MLT.

We then applied this formalism to the convective Urca
process and derived the entropy equation which has been
central to previous discussions of the Urca process, and com-
puted the convective velocity. We showed that the net heat-
ing effect of the Urca process strongly depends on the state
of mixing of the convective core, for which we provide an
estimate. Urca reactions generally tend to reduce the effects
of buoyancy. More generally we show that, in degenerate
matter, reactions that change the number of electrons have
a direct influence on the convective velocity.

As an illustration of our model we computed stationary
convective cores. These computations show that, even for a
very small Urca fraction, convective velocities are strongly

modified compared to the case without Urca nuclei. They
also show that convective Urca cores are unlikely to be in a
stationary state. Hence, time-dependent computations with
a full nuclear reaction network are needed to provide the
final answer to the question, “what is the influence of the
convective Urca process on the ignition conditions in type
Ia supernovae?”

APPENDIX A: STABILITY ANALYSIS OF
CONVECTION

In this appendix we analyse the stationary states of con-
vection when the evolution of the average quantities is very
slow. We first investigate the possible available stationary
states and then study their linear stability.

In the following we assume that ∆R = ∆ǫ = ∆L =
∆u = 0 and neglect v and non-local terms in the difference
equations.

A1 The stationary states

The radiative state (u = 0) is always a stationary solution
of our equations. The other stationary convective states are
solutions of the system of equations (55)–(57) when u = 0
has already been factored out. We now compute the solu-
tions of this system and examine their existence and possible
multiplicity.

A1.1 The cubic equation for the convective velocity

Standard thermodynamics gives

∂e

∂r
+ p

∂

∂r

1

ρ
= T

∂s

∂r
+ µ.

∂N

∂r

= Tcp(
∂ ln T

∂r
−∇a

∂ ln p

∂r
) + µ

′.
∂N

∂r
=

−TcP

Hp

(∇−∇a) + µ
′.

∂N

∂r
, (A1)

where s is the specific entropy, ∇a = ( ∂ ln T
∂ lnP

)s,N, cp =
( ∂h

∂T
)p,N, µ are the chemical potentials and µ

′ = µ +
T ( ∂s

∂N
)T,p. We also have

∆h = cp∆T + µ
′.∆N. (A2)

Using relation (57), we get

∆T

T
=

λ

2Hp

(∇−∇a)
(

1 + β
χ

uλ

)−1

(A3)

where ∇ = ∂ lnT
∂ ln p

and H−1
p = − ∂ lnp

∂r
. We now identify the

mixing length of MLT with λ, so that equation (A3) becomes
the MLT excess temperature equation. The density differ-
ence can be written in terms of temperature and abundance
differences if we use the thermodynamical relation

∆ ln ρ = −δ∆ lnT + µ
′′.∆lnN, (A4)

where δ = −( ∂ lnρ

∂ ln T
)p,N and µ

′′ = ( ∂ lnρ

∂ lnN
)p,T . We obtain the

convective velocity u by substituting this expression into
equation (55) and using relations (57) and (A3)

u3+u0u
2+u2

1[δ(−∇+∇a)+µ
′′.∇∇∇N]u+u0u

2
1µ

′′.∇∇∇N = 0,(A5)
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where u0 = β χ

λ
, u1 =

√

p

ρ
λ

2Hp

, and ∇∇∇N = d lnN

d ln p
. Note that

the dot product µ
′′.∇∇∇N corresponds to the more familiar

φ∇µ where µ is mean molecular weight, φ = ( ∂ ln ρ

∂ ln µ
)p,T and

∇µ = d ln µ

d ln p
. Solving this cubic equation for the real positive

roots (if they exist) gives the convective velocity which in
turn allows to compute all the ∆ quantities :

∆ ln T =
λ

2Hp

u

u + u0

(∇−∇a) and (A6)

∆ lnN =
λ

2Hp

∇∇∇N. (A7)

We now determine the number of solutions of the cubic (A5).

A1.2 Multiplicity of stationary states

This cubic may have three real roots or one real root and
two complex conjugate roots according to the sign of its
discriminant (positive or negative).

The number of real positive roots relies on the re-
spective signs of δ(∇ − ∇a) − µ

′′.∇∇∇N (Ledoux criterion)
and µ

′′.∇∇∇N (Rayleigh-Taylor criterion). We use the rule of
Descartes to obtain the number of solutions.

• If µ
′′.∇∇∇N < 0 there is one real positive root (Rayleigh-

Taylor instability).
• If µ

′′.∇∇∇N > 0 and δ(∇−∇a) −µ
′′.∇∇∇N < 0 there is no

real positive root.
• If µ

′′.∇∇∇N > 0 and δ(∇−∇a) −µ
′′.∇∇∇N > 0 there is no

positive root if the cubic discriminant is positive and there
are two positive roots otherwise (convective case).

In the convective case, when u ≫ u0, the maximum
convective velocity becomes

u = u1

√

δ(∇−∇a) − µ′′.∇∇∇N. (A8)

A2 Stability

To analyse the stability of the stationary states we need the
time-dependent equations for the convective properties

λ

2

∂u

∂t
= −u2

1

2Hp

λ
(−δ∆ln T + µ

′′.∆ lnN) − u2, (A9)

λ

2

∂∆ln T

∂t
= u

λ

2Hp

(∇−∇a) − (u + u0)∆ lnT (A10)

and

λ

2

∂∆lnN

∂t
= u(

λ

2Hp

∇∇∇N − ∆lnN). (A11)

In equation (A10) we assume that the evolution of the mean
fluid is slow compared to the convective time scale so that
time-derivatives of cp, µ

′ and p can be neglected.
The linear stability of this system at a stationary point

is determined by the eigenvalues of the matrix

λ

2





−2u δu2
1

2Hp

λ
−u2

1
2Hp

λ
µ

′′

λ
2Hp

(∇−∇a) − ∆ lnT −(u + u0) 0
λ

2Hp

∇∇∇N − ∆ lnN 0 −u.I



 .(A12)

where I is the identity N × N matrix (N is the total num-
ber of species),∇∇∇N and ∆ lnN are vertical N-component
vectors, and µ

′′ is a horizontal N-component vector. The
system is stable when the real part of all eigenvalues is neg-
ative. It is unstable otherwise.

A2.1 Radiative state (u = 0)

In this case the matrix (A12) reads

λ

2





0 δu2
1

2Hp

λ
−u2

1

2Hp

λ
µ

′′

λ
2Hp

(∇−∇a) −u0 0
λ

2Hp
∇∇∇N 0 0



 . (A13)

Its characteristic polynomial is PN (x) =
−(−x)N−1P (x) where P is the cubic (A5). Hence when
there exists a convective state (a real positive root of the
cubic P ) the radiative state must be unstable. If there is
no real positive root to P and the discriminant is positive,
the stability depends on whether the real part of the
complex conjugate roots are negative. The unstable case
corresponds to semi-convection, a state that is intrinsically
time-dependent. In all the remaining cases (negative dis-
criminant and no real positive root) the radiative state is
stable.

A2.2 Convective state (u > 0)

In this case, the matrix (A12) reads

λ

2





−2u δu2
1

2Hp

λ
−u2

1

2Hp

λ
µ

′′

− u0

u+u0

λ
2Hp

(∇−∇a) −(u0 + u) 0

0 0 −u.I



 .(A14)

When there are two available stationary states with
different velocities u the state with the lower velocity is
always unstable, and the state with the higher velocity is
always stable.
If u ≫ u0 the eigenvalues are real negative {−2u,−u} and
the convective state is stable.
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